Skip to content
本页目录

53-I-在排序数组中查找数字I

题目描述

https://leetcode.cn/problems/zai-pai-xu-shu-zu-zhong-cha-zhao-shu-zi-lcof

统计一个数字在排序数组中出现的次数。

示例 1:

输入: nums = [5,7,7,8,8,10], target = 8
输出: 2

示例 2:

输入: nums = [5,7,7,8,8,10], target = 6
输出: 0

提示: $$ 0 <= nums.length <= 10^5 \ -10^9 <= nums[i] <= 10^9 \ nums 是一个非递减数组 \ -10^9 <= target <= 10^9 $$

注意:本题与主站 34 题相同(仅返回值不同):https://leetcode.cn/problems/find-first-and-last-position-of-element-in-sorted-array/

来源:力扣(LeetCode) 链接: 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路1 常规搜索,时间复杂度n

实现代码

csharp
public class Solution {
    public int Search(int[] nums, int target) {
        int count = 0;
        for(int i = 0; i < nums.Length; i++){
            if(nums[i] == target){
                count++;
            }
            else{
                if(count > 0){
                    return count;
                }
            }
        }
        return count;
    }
}

思路2: 二分法

本地用常规解法肯定不是面试官期望的解,因为已经排序好的数组,所以应该可以使用二分法

csharp
public class Solution {
    public int Search(int[] nums, int target) {
        if(nums.Length == 0){
            return 0;
        }
        int index = BinarySearch(nums,0,nums.Length-1,target);
        //两边延伸
        if(index == -1){
            return 0;
        }
        int count = 1;
        for(int i=index-1; i>=0; i--){
            if(nums[i] == target){
                count++;
            }
            else{
                break;
            }
        }
        for(int i=index+1; i<nums.Length; i++){
            if(nums[i] == target){
                count++;
            }
            else{
                break;
            }
        }
        return count;
    }

    //找出 index
    private int BinarySearch(int[] nums, int left, int right, int target){
        if(left == right){
            if(nums[left] != target){
                return -1;
            }
        }
        int mid = left + (right - left) / 2;
        if(nums[mid] == target){
            return mid;
        }
        else if(nums[mid] < target){
            return BinarySearch(nums, mid+1, right, target);
        }
        else{
            return BinarySearch(nums, left, mid, target);
        }
    }
}

Released under the MIT License.