Skip to content
本页目录

0304-二维区域和检索-矩阵不可变

https://leetcode.cn/problems/range-sum-query-2d-immutable

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的 左上角 为 (row1, col1) ,右下角 为 (row2, col2) 。

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1) 、右下角 (row2, col2) 所描述的子矩阵的元素 总和 。

示例 1:

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]

解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 10^5
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
最多调用 10^4 次 sumRegion 方法

思路:数组前缀和 dp

暴力解法会超时,还是要使用 矩阵前缀和 的方法

csharp
public class NumMatrix {
    protected int[][] dp;
    public NumMatrix(int[][] matrix) {
        //初始化数组
        int rows = matrix.Length;
        int cols = matrix[0].Length;
        dp = new int[rows+1][];
        for(int i=0;i<rows+1;i++){
            dp[i] = new int[cols+1];
        }
        //计算矩阵前缀和
        for(int i=0;i<rows;i++){
            for(int j=0;j<cols;j++){
                dp[i+1][j+1] = dp[i][j+1] + dp[i+1][j] - dp[i][j] + matrix[i][j];
            }
        }
    }
    
    public int SumRegion(int row1, int col1, int row2, int col2) {
        return dp[row2+1][col2+1] - dp[row1][col2+1] - dp[row2+1][col1] + dp[row1][col1];
    }
}

复习:前缀和 20200519

csharp
public class NumMatrix {

    private int[,] preSum;

    public NumMatrix(int[][] matrix) {
        int m = matrix.Length;
        int n = matrix[0].Length;
        preSum = new int[m+1,n+1];
        //计算前缀和,扩展一行一列方便计算
        for(int i=1; i<=m; i++){
            for(int j=1; j<=n; j++){
                preSum[i,j] = preSum[i-1,j] + preSum[i,j-1] - preSum[i-1,j-1] + matrix[i-1][j-1];
            }
        }
    }
    
    public int SumRegion(int row1, int col1, int row2, int col2) {
        return preSum[row2+1,col2+1] - preSum[row1,col2+1] - preSum[row2+1,col1] + preSum[row1,col1];
    }
}

Released under the MIT License.